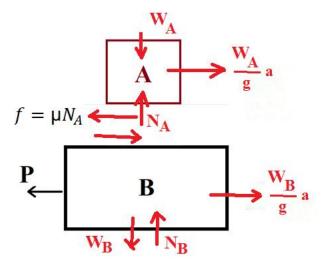
سلم امتحان میکانیک 3 لطلاب السنة الثانية—نموذج A

الدورة الفعلية الثانية /2025-2024/

جامعة الفرات كلية المندسة المدنية مدني عام


الدرجة العظمى: 70 المدة : ساعتان

اسم الطالب:

السؤال الأول (15 درجة):

لدينا كتلة $M_B=800[N]$ معامل الاحتكاك بين سطحي تماس الكتلتين $W_B=800[N]$ معامل الاحتكاك بين سطحي تماس الكتلتين هو $\mu=0.1$. الكتلة B متوضعة على وسادة هوائية بحيث أن معامل احتكاكها مع الأرض معدوم. و المطلوب:

-أوجد القيمة العظمى لقوة الشد P للكتلة B الكافية لتحريكها دون سقوط الكتلة A.

: A من التوازن التحريكي للكتلة
$$\Sigma$$
 Fi $_y=0 o N_A-W_A=0 o N_A=300[N]$ (در جتان)
$$\Sigma \, {\rm Fi}_x=0 o \frac{W_A}{g}a-\mu N_A=0$$
 $\frac{300}{9.81}a-0.1*300=0 o$ (در جتان) $\alpha=0.981 \left[\frac{m}{s^2}\right] \approx 1 \left[\frac{m}{s^2}\right]$

الحل: نرسم توزع القوى على الجسم الحر (4 درجات للرسم)

من التوازن التحريكي للكتلة B :

(درجتان)
$$\sum \mathrm{Fi}_{\chi} = 0 \rightarrow \frac{w_B}{g} a + \mu N_A - P = 0$$
$$\frac{800}{10} 1 + 0.1 * 300 - P = 0$$

$$P = 110 [N]$$
 درجات)

وهي اعظم قوة لتحرك B دون سقوط A

السؤال الثاني (10 درجات):

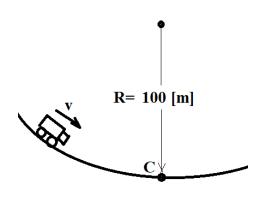
تتحرك نقطة مادية كتلتها x,y,z حسب المعادلات : x,y,z بالمتر و الزمن x,y,z حيث تقاس x,y,z بالمتر و الزمن t=2~s بالثانية. و المطلوب عين قيمة و اتجاه المؤثرة في النقطة المادية في اللحظة الزمنية t=2~s

 $\sum \vec{F} = m \, \vec{a}$ الحل: حسب قانون نيوتن الثاني في التحريك

نو جد التسار ع

درجتان
$$v_x = \frac{dx}{dt} = 2, v_y = \frac{dy}{dt} = 8t, v_z = \frac{dz}{dt} = 3\left[\frac{m}{s}\right]$$

درجتان
$$a_x=rac{dv_x}{dt}=0$$
, $a_y=rac{dv_y}{dt}=8$, $a_z=rac{dv_z}{dt}=0$ $[rac{m}{s^2}]$


$$\vec{a} = a_x \vec{x} + a_y \vec{y} + a_z \vec{z} = a_y \vec{y} = 8 \vec{y}$$

التسارع
$$[m/s^2]$$
 a=8 و اتجاهه موافق للمحور $a=8$

y اتجاهها موافق المحور
$$ec{F}=m\;ec{a}=m\;ec{a_y} o F=1*8=8\;[N]$$

در جتان للقيمة، در جة للقيمة ، در جة للاتجاه

السؤال الثالث (15 درجة):

تتحرك سيارة على قوس دائرية و عندما وصلت الى النقطة C كانت سرعتها $a_{ au}=2[rac{m}{s^2}]$ و نصف قطر تقوس v=20 [m/s] المسار R=100[m]. و المطلوب:

- احسب التسارع الكلى للسيارة و زاوية ميله بالنسبة للناظم في C.

الحل:
$$a=\sqrt{{a_n}^2+{a_{ au}}^2}$$
 درجتان

التسارع الناظمي 4 درجات منها درجة للواحدة $a_n=\frac{V^2}{R}=\frac{20^2}{100}=4$ درجات منها درجة للواحدة $a=\sqrt{4^2+2^2}=4.47$ [$\frac{m}{{
m c}^2}$]

درجات و يمكن الحساب بالراديان 4 $an heta = rac{a_ au}{a_n} = rac{2}{4} o heta = 26.5\,^\circ$

السؤال الرابع (10 درجة): أجب بصح أو خطأ: يكتفى بالإجابة بصح أو خطأ دون التصحيح

- 1. علم التحريك يدرس حركة الاجسام المادية دون اعتبار القوى المؤثرة. (خطأ)
- 2. في علم الستاتيك يتم افتراض أن القوى المؤثرة على الجسم متغيرة. (خطأ)
- (صح) الخارجية $\overline{f_i}$ المؤثرة على جسم متحرك تعطى بالعلاقة .3

$$\sum \overleftarrow{F_i} = m\overleftarrow{a}$$

(خطأ) في الحركة المستقيمة المنتظمة تكون محصلة القوى الخارجية $\frac{F_1}{I}$ غير معدومة

$$\sum \overleftarrow{F_i} = m\overleftarrow{a}$$

في الحركة المستقيمة لنقطة مادية تخضع لقوة ثابتة Qلها منحى الحركة ذاته، تعطى معادلة الحركة (صح)

$$x = \frac{Q}{m}t^2 + v_0 t + x_0$$

- 6. تبقى سرعة الجسم المتحرك حركة مستقيمة منتظمة ثابتة طول فترة الحركة حتى لو تعرض الى قوة خارجية في لحظة ما من الحركة. (خطأ)
 - 7. تغيّر الطاقة الحركية لنقطة مادية أثناء انتقال ما، يساوي المجموع الجبري لأعمال القوة المؤثرة أثناء ذلك الانتقال. (صح)
- 8. في الحركة المنحنية للنقطة المادية، ان المركبة المماسية للقوة تعمل على تغيير مقدار السرعة للنقطة بإكسابها تسارع مماسي.
 (صح)
 - 9. في الحركة المنحنية للنقطة المادية، تعمل المركبة الناظمية للقوة على تغيير اتجاه السرعة v. (صح)
 - 10. اذا كان جسم في حالة سكون فإنه ينتقل لحالة الحركة تلقائياً دون تأثير قوى خارجية. (خطأ)

السؤال الخامس: (20 درجة): الحسابات جانباً الزامية

لدينا قارب كتلته [kg] دفع بقوة اكسبته سرعة ابتدائية [m/s] (في اللحظة (t=0) اذا كانت قوة احتكاك القارب مع السرعة وفق العلاقة (t=0) حيث (t=0) سرعة القارب في اللحظة (t=0) في اللحظة

الحل: درجتان لكل بند

1. بتطبیق قانون نیوتن الثانی $\vec{F} = m\vec{a}$ ، فإن الطرف الیساری من العلاقة مساو \vec{N} • \vec{N} • $\vec{P} + \vec{R} + \vec{N}$ • \vec{N} • $\vec{P} + \vec{R} + \vec{N}$ 2. باسقاط العلاقة السابقة على منحى \vec{X} و تطویر ها بتابعیة \vec{X} نجد:

• \vec{P} • $\vec{R} + \vec{N}$

• $5\frac{d^2x}{dt^2} + 5\frac{dx}{dt} = 0$ • $20\frac{dx}{dt} + 10 = 0$ • $\frac{d^2x}{dt^3} + 2\frac{d^2x}{dt^2} = 0$ • $\frac{dx}{dt} + 5 = 0$

3. لحل المعادلة التفاضلية السابقة نفرض

• $x = e^2$ • $x = \lambda t$ • $x = e^{\lambda t}$ • $x = e^{2t}$

 $e^{\lambda t} \neq 0$ تصبح معادلة الحركة المميزة بتابعية λ حيث λ

• $5\lambda^2 + \lambda = 0$ • $5\lambda^2 + \lambda = 0$ • $5\lambda^3 + \lambda = 0$

• $\lambda = 0$

• $\lambda = 0, \lambda = -1$ • $\lambda = 1, \lambda = 5$ • $\lambda = 0, \lambda = 2$

5. حل المعادلة السابقة يؤدي الي

6. معادلة سرعة حركة القارب تعطى بالعلاقة

• $v = 2c_1t + c_2$ • $v = c_1 + c_2e^{-0.5t}$ • $v = -0.5c_2e^{-0.5t}$ • $v = -c_2e^{-t}$

• v = 6t + 2 • $v = 3e^{-t} + 3$ • $v = e^{-0.5t}$

7. يعطى الحل الخاص لسرعة القارب بالعلاقة: • $v = e^{-t}$

8. يعطى الحل الخاص لموضع القارب بالعلاقة:

 $x = 1 - e^{-t} \qquad \bullet \quad x = 5e^{-t} \qquad \bullet \quad x = 2 - 2e^{-0.5t} \qquad \bullet \quad x = 2t^2 + 3t - 1$

9. ما سرعة القارب بعد مرور زمن 3 ثانية على بدء الحركة؟

 $v = e^{-t} = e^{-3} = 0.049 \left[\frac{m}{a} \right]$

10. ما موضع القارب xبعد مرور زمن 2 ثانية على بدء الحركة ؟

 $x = 1 - e^{-t} = 1 - e^{-2} = 0.864 [m]$

انتهى السلم

مدرس المقرر: د. باسل قدار